Nuclear receptors (NRs) function as transcription factors that respond to cellular signals to initiate new gene expression programs (King-Jones and Thummel, 2005) and have essential roles in embryonic development, growth and differentiation. NRs

نویسندگان

  • Chhavi Chauhan
  • Claudia B. Zraly
  • Megan Parilla
  • Manuel O. Diaz
  • Andrew K. Dingwall
چکیده

INTRODUCTION Nuclear receptors (NRs) function as transcription factors that respond to cellular signals to initiate new gene expression programs (King-Jones and Thummel, 2005) and have essential roles in embryonic development, growth and differentiation. NRs collaborate with co-factors (>300) that provide important enzymatic and regulatory functions (Lonard and O’Malley, 2007; Lonard and O’Malley, 2006). Co-factors can be activators or repressors and are typically recruited to gene promoters through associations with receptors (Bulynko and O’Malley, 2011). Some co-factors direct changes in the epigenetic environment of target genes by direct covalent chromatin modification or nucleosome remodeling. Co-activators are recruited in a ligand-dependent manner, whereas unliganded receptors often associate with corepressors. Co-activators exist in large complexes required for the transcription of genes that are regulated by at least 48 vertebrate NRs, including retinoic acid receptor (RAR) (Goo et al., 2003; Lee et al., 2006), estrogen receptor (ER) (Mo et al., 2006), liver-Xreceptor (LXR) (Lee, S. et al., 2008), farnesoid-X-receptor (FXR) (Kim et al., 2009), as well as a co-activator for p53 (Lee et al., 2009). Disruptions of both NRs and their co-regulators have been linked to many cancers and developmental disorders (Lonard et al., 2007; Sonoda et al., 2008). Hormone signaling pathways in Drosophila melanogaster rely on two primary hormones, the steroid hormone 20hydroxyecdysone (20HE) and sesquiterpenoid juvenile hormone (JH; JHE – FlyBase), and 18 receptors representing all major conserved nuclear receptor subfamilies (King-Jones and Thummel, 2005). Drosophila Ecdysone Receptor (EcR) is an FXR/LXR ortholog, whereas its heterodimeric partner Ultraspiracle (USP) is an RXR ortholog. Drosophila Trithorax-related (TRR) is a co-activator of EcRUSP. TRR is a histone lysine methyltransferase (HMT) that trimethylates histone 3 onlysine 4 (H3K4me3) and TRR functions are essential for activating ecdysone-regulated genes (Sedkov et al., 2003). TRR is closely related to another Drosophila protein, Trithorax (TRX), which regulates homeotic (Hox) gene expression through similar methyltransferase activity (Schuettengruber et al., 2007; Simon and Tamkun, 2002). The mammalian counterparts of TRR are MLL2 (also known as ALR or MLL4) and MLL3 (also known as HALR). MLL2 and MLL3 are enormous (5537 aa and 4911 aa, respectively), with multiple conserved domains, including histone methyltransferase (SET domain), five plant homeodomain (PHD) zinc fingers, an HMG-I binding motif, LXXLL NR binding motifs and FY-rich regions (Prasad et al., 1997). Through the SET domain, both MLL2 and MLL3 directly methylate histone H3 to mediate transcription activation (Issaeva et al., 2007; Vicent et al., 2011). MLL2 and MLL3 are components of large SET1/COMPASS-like co-activator complexes (Eissenberg and Shilatifard, 2010; Miller et al., 2001; Nagy et al., 2002) that are required for NR-directed gene regulation (Goo et al., 2003; Issaeva et al., 2007; Lee et al., 2006; Mo et al., 2006). These complexes have important human disease connections, including developmental disorders and cancers. MLL2 1Oncology Institute, 2Department of Medicine, 3Department of Pathology, Stritch School of Medicine, Loyola University of Chicago, Maywood, IL 60153, USA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear Architecture and Epigenetics of Lineage Choice

Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...

متن کامل

The NR4A subfamily of nuclear receptors: new early genes regulated by growth factors in vascular cells.

The molecular mechanisms regulating endothelial cell activation and vascular smooth muscle cell proliferation are critical in the pathological processes underlying atherosclerosis. Numerous growth factors and cytokines trigger the complex and redundant signaling pathways that regulate cell cycle entry; however, the genes controlling these processes are not fully known. Applying techniques for d...

متن کامل

Topic 1.1 Nuclear receptor superfamily: Principles of signaling*

Nuclear receptors (NRs) comprise a family of 49 members that share a common structural organization and act as ligand-inducible transcription factors with major (patho)physiological impact. For some NRs (“orphan receptors”), cognate ligands have not yet been identified or may not exist. The principles of DNA recognition and ligand binding are well understood from both biochemical and crystal st...

متن کامل

Expression of Endoderm and Hepatic Specific Genes after in vitro Differentiation of Human Embryonic Stem Cells

Background: Human embryonic stem cells (hESC), which are derived from the inner cell mass of the blastocysts, have been considered to be pluripotent cells. In this study we examine the differentiating potential of hESC into hepatocytes by characterization of the expression of endoderm and liver-specific genes. Methods: hESC were cultivated in suspension to form aggregates, the embryoid bodies. ...

متن کامل

Unexpected Novel Relational Links Uncovered by Extensive Developmental Profiling of Nuclear Receptor Expression

Nuclear receptors (NRs) are transcription factors that are implicated in several biological processes such as embryonic development, homeostasis, and metabolic diseases. To study the role of NRs in development, it is critically important to know when and where individual genes are expressed. Although systematic expression studies using reverse transcriptase PCR and/or DNA microarrays have been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012